• Login
    View Item 
    •   Mak IR Home
    • College of Health Sciences (CHS)
    • School of Medicine (Sch. of Med.)
    • School of Medicine (Sch. of Med.) Collections
    • View Item
    •   Mak IR Home
    • College of Health Sciences (CHS)
    • School of Medicine (Sch. of Med.)
    • School of Medicine (Sch. of Med.) Collections
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Methods to estimate baseline creatinine and define acute kidney injury in lean Ugandan children with severe malaria: A prospective cohort study

    Thumbnail
    View/Open
    Research article (1.666Mb)
    Date
    2020
    Author
    Batte, Anthony
    Starr, Michelle C.
    Schwaderer, Andrew L.
    Opoka, Robert O.
    Namazzi, Ruth
    Nishiguchi, Erika S. Phelps
    Ssenkusu, John M.
    John, Chandy C.
    Conroy, Andrea L.
    Metadata
    Show full item record
    Abstract
    Background: Acute kidney injury (AKI) is increasingly recognized as a consequential clinical complication in children with severe malaria. However, approaches to estimate baseline creatinine (bSCr) are not standardized in this unique patient population. Prior to wide-spread utilization, bSCr estimation methods need to be evaluated in many populations, particularly in children from low-income countries. Methods: We evaluated six methods to estimate bSCr in Ugandan children aged 6 months to 12 years of age in two cohorts of children with severe malaria (n = 1078) and healthy community children (n = 289). Using isotope dilution mass spectrometry (IDMS)-traceable creatinine measures from community children, we evaluated the bias, accuracy and precision of estimating bSCr using height-dependent and height-independent estimated glomerular filtration (eGFR) equations to back-calculate bSCr or estimating bSCr directly using published or population-specific norms. Methods: We evaluated six methods to estimate bSCr in Ugandan children aged 6 months to 12 years of age in two cohorts of children with severe malaria (n = 1078) and healthy community children (n = 289). Using isotope dilution mass spectrometry (IDMS)-traceable creatinine measures from community children, we evaluated the bias, accuracy and precision of estimating bSCr using height-dependent and height-independent estimated glomerular filtration (eGFR) equations to back-calculate bSCr or estimating bSCr directly using published or population-specific norms. Conclusions: We recommend using height-independent age-based approaches to estimate bSCr in hospitalized children in sub-Saharan Africa due to challenges in accurate height measurements and undernutrition which may impact bSCr estimates. In this population the Pottel-age based GFR estimating equation obtained comparable bSCr estimates to population-based estimates in healthy children.
    URI
    https://doi.org/10.1186/s12882-020-02076-1
    http://hdl.handle.net/10570/10973
    Collections
    • School of Medicine (Sch. of Med.) Collections

    DSpace 5.8 copyright © Makerere University 
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of Mak IRCommunities & CollectionsTitlesAuthorsBy AdvisorBy Issue DateSubjectsBy TypeThis CollectionTitlesAuthorsBy AdvisorBy Issue DateSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace 5.8 copyright © Makerere University 
    Contact Us | Send Feedback
    Theme by 
    Atmire NV