Show simple item record

dc.contributor.authorOnyilo, Francis
dc.contributor.authorTusiime, Geoffrey
dc.contributor.authorChen, Li-Hung
dc.contributor.authorFalk, Bryce
dc.contributor.authorStergiopoulos, Ioannis
dc.contributor.authorTripathi, Jaindra N.
dc.contributor.authorTushemereirwe, Wilberforce
dc.contributor.authorKubiriba, Jerome
dc.contributor.authorChanga, Charles
dc.contributor.authorTripathi, Leena
dc.date.accessioned2019-08-13T08:24:00Z
dc.date.available2019-08-13T08:24:00Z
dc.date.issued2017-05-16
dc.identifier.citationOnyilo F, Tusiime G, Chen L-H, Falk B, Stergiopoulos I, Tripathi JN, Tushemereirwe W, Kubiriba J, Changa C and Tripathi L (2017) Agrobacterium tumefaciens-Mediated Transformation of Pseudocercospora fijiensis to Determine the Role of PfHog1 in Osmotic Stress Regulation and Virulence Modulation. Front. Microbiol. 8:830. doi: 10.3389/fmicb.2017.00830en_US
dc.identifier.uridoi: 10.3389/fmicb.2017.00830
dc.identifier.urihttp://hdl.handle.net/10570/7360
dc.description.abstractBlack Sigatoka disease, caused by Pseudocercospora fijiensis is a serious constraint to banana production worldwide. The disease continues to spread in new ecological niches and there is an urgent need to develop strategies for its control. The high osmolarity glycerol (HOG) pathway in Saccharomyces cerevisiae is well known to respond to changes in external osmolarity. HOG pathway activation leads to phosphorylation, activation and nuclear transduction of the HOG1 mitogen-activated protein kinases (MAPKs). The activated HOG1 triggers several responses to osmotic stress, including up or down regulation of different genes, regulation of protein translation, adjustments to cell cycle progression and synthesis of osmolyte glycerol. This study investigated the role of the MAPK-encoding PfHog1 gene on osmotic stress adaptation and virulence of P. fijiensis. RNA interference-mediated gene silencing of PfHog1 significantly suppressed growth of P. fijiensis on potato dextrose agar media supplemented with 1 M NaCl, indicating that PfHog1 regulates osmotic stress. In addition, virulence of the PfHog1-silenced mutants of P. fijiensis on banana was significantly reduced, as observed from the low rates of necrosis and disease development on the infected leaves. Staining with lacto phenol cotton blue further confirmed the impaired mycelial growth of the PfHog1 in the infected leaf tissues, which was further confirmed with quantification of the fungal biomass using absolutequantitative PCR. Collectively, these findings demonstrate that PfHog1 plays a critical role in osmotic stress regulation and virulence of P. fijiensis on its host banana. Thus, PfHog1 could be an interesting target for the control of black Sigatoka disease in banana.en_US
dc.description.sponsorshipAgricultural Biotechnology Support Project II- USAID, Norman E. Borlaug Leadership Enhancement in Agriculture Program (LEAP)en_US
dc.language.isoenen_US
dc.publisherFrontiers in Microbiologyen_US
dc.subjectAgrobacterium tumefaciensen_US
dc.subjectPseudocercospora fijiensisen_US
dc.subjectHOG1en_US
dc.subjectOsmotic stressen_US
dc.subjectVirulenceen_US
dc.subjectBanana plantsen_US
dc.subjectBlack Sigatoka diseaseen_US
dc.titleAgrobacterium tumefaciens-Mediated Transformation of Pseudocercospora fijiensis to Determine the Role of PfHog1 in Osmotic Stress Regulation and Virulence Modulationen_US
dc.typeArticleen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record