• Login
    View Item 
    •   Mak IR Home
    • College of Agricultural and Environmental Sciences (CAES)
    • School of Agricultural Sciences (SAS)
    • School of Agricultural Sciences (SAS) Collections
    • View Item
    •   Mak IR Home
    • College of Agricultural and Environmental Sciences (CAES)
    • School of Agricultural Sciences (SAS)
    • School of Agricultural Sciences (SAS) Collections
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Genetic analysis of resistance to rice bacterial blight in Uganda

    Thumbnail
    View/Open
    Journal article (53.75Kb)
    Date
    2012
    Author
    Habarurema, I.
    Asea, G.
    Lamo, J.
    Gibson, P.
    Edema, R.
    Séré, Y.
    Onasanya, R.O.
    Metadata
    Show full item record
    Abstract
    Rice bacterial blight (Xanthomonas oryzae pv.oryzae) is a major constraint to rice (Oryza sativa L.) production in Uganda and as part of strategies to develop resistant cultivars, it is important to evaluate resistance of commonly used cultivars. A full-diallel mating design involving three resistant and three susceptible rice cultivars was used to produce F1 and F2 progenies in a screen-house at the National Crop Resources Research Institute (NaCRRI), Namulonge in Uganda. The parents and F2 populations were challenged with the Xanthomonas oryzae pv.oryzae isolate (UX00) and lesion lengths were scored 21 days after inoculation (DAI). Griffing’s combining ability analysis showed significant specific combining ability (SCA) and non-significant general combining ability (GCA) effects, indicating the preponderance of non-additive gene effects in controlling the resistance to bacterial leaf blight (BLB) in rice. Rice genotypes, NERICA14, NERICA10 and NERICA4 had desirable GCA estimates, and were, therefore, the best general combiners. Crosses CO39 x NERICA10 and NERICA14 x IRAT104 had favorable SCA values. These hybrids are thus, promising in developing the BLB resistant progenies. Significant reciprocal effects indicate the importance of maternal contribution in controlling the BLB virulence. For this, resistant lines can be used as female parents for fear of affecting transfer of resistance to the progenies, and the hybrids and their reciprocals would be handled separately. Low estimates of narrow sense coefficient of genetic determination (NSCGD) (0.9%) and medium broad sense coefficient of genetic determination (BSCGD) estimates (16.4%) highlight the influence of non-additive gene action in controlling the resistance to BLB, confirming an effective selection of superior genotypes at advanced generations when the maximum homozygosity is fixed.
    URI
    http://www.ajol.info/index.php/acsj/article/view/78776/69100
    http://hdl.handle.net/10570/4623
    Collections
    • School of Agricultural Sciences (SAS) Collections

    DSpace 5.8 copyright © Makerere University 
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of Mak IRCommunities & CollectionsTitlesAuthorsBy AdvisorBy Issue DateSubjectsBy TypeThis CollectionTitlesAuthorsBy AdvisorBy Issue DateSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace 5.8 copyright © Makerere University 
    Contact Us | Send Feedback
    Theme by 
    Atmire NV