• Login
    View Item 
    •   Mak IR Home
    • College of Agricultural and Environmental Sciences (CAES)
    • School of Agricultural Sciences (SAS)
    • School of Agricultural Sciences (SAS) Collections
    • View Item
    •   Mak IR Home
    • College of Agricultural and Environmental Sciences (CAES)
    • School of Agricultural Sciences (SAS)
    • School of Agricultural Sciences (SAS) Collections
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Morphological and genetic diversity analysis of rice accessions (Oryza sativa L.) differing in iron toxicity tolerance

    Thumbnail
    View/Open
    Journal article (456.2Kb)
    Date
    2013
    Author
    Onaga, Geoffrey
    Egdane, James
    Edema, Richard
    Abdelbagi, Ismail
    Metadata
    Show full item record
    Abstract
    A major emphasis in breeding for iron toxicity tolerance in rice is to identify differences that are associated with resistance and harness them for genetic improvement. In this study, thirty accessions, including IRRI gene bank accessions, two varieties from Brazil, 8 cultivars from West Africa and 10 cultivars from Uganda were analyzed for sensitivity to iron toxicity, and genetic diversity using morphological and SSR markers. Two genotypes, IR61612-313-16-2-2-1 and Suakoko 8 showed significantly high resistance with an average score of ² 3.5 on 1 - 9 scale. The SRR markers were highly informative and showed mean polymorphism information content (pic) of 0.68. The PIC values revealed that RM10793, RM3412, RM333, RM562, RM13628, RM310, RM5749, and RM154 could be the best markers for genetic diversity estimation of these rice cultivars. Diversity at the gene level showed an average of 4.61 alleles ranging from 2 to 12 per locus. Mean gene diversity (H) value for all SSR loci for the 30 genotypes evaluated was 0.69 but was decreased to 0.53 when analysis was performed on Ugandan accessions. The low genetic diversity found among the Ugandan accessions is the evidence of a narrow genetic base, and such a scenario has a potential vulnerability for resistance break down. A low correlation was detected between the observed molecular and morphological datasets. This means that a combination of morphological traits and SSR analysis would be required when assessing genetic variation under iron toxic conditions, and could be a practical strategy for breeders when planning crosses. A distinction between the resistant and susceptible accessions in both phenotyping and SSR datasets suggests the presence of unique alleles that could be harnessed for improvement of rice against iron toxicity.
    URI
    http://dx.doi.org/10.1007/s12892-012-0104-0
    http://hdl.handle.net/10570/4602
    Collections
    • School of Agricultural Sciences (SAS) Collections

    DSpace 5.8 copyright © Makerere University 
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of Mak IRCommunities & CollectionsTitlesAuthorsBy AdvisorBy Issue DateSubjectsBy TypeThis CollectionTitlesAuthorsBy AdvisorBy Issue DateSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace 5.8 copyright © Makerere University 
    Contact Us | Send Feedback
    Theme by 
    Atmire NV