• Login
    View Item 
    •   Mak IR Home
    • College of Agricultural and Environmental Sciences (CAES)
    • School of Agricultural Sciences (SAS)
    • School of Agricultural Sciences (SAS) Collections
    • View Item
    •   Mak IR Home
    • College of Agricultural and Environmental Sciences (CAES)
    • School of Agricultural Sciences (SAS)
    • School of Agricultural Sciences (SAS) Collections
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Exploiting grain-filling rate and effective grain-filling duration to improve grain yield of early-maturing maize

    Thumbnail
    View/Open
    Research article (630.2Kb)
    Date
    2013
    Author
    Gasura, Edmore
    Setimela, Peter
    Edema, Richard
    Gibson, Paul T.
    Okori, Patrick
    Tarekegne, Amsal
    Metadata
    Show full item record
    Abstract
    Early-maturing maize (Zea mays L.) genotypes yield 15 to 30% less than late-maturing genotypes. One strategy for improving grain yield in the early-maturing group involves assessment of grain-filling traits as secondary traits for selection for high grain yield. In this study, we investigated the possibility of using grain-filling rate and duration for improving grain yield in early-maturing tropical maize. Forty-four hybrids generated using North Carolina design II were evaluated at CIMMYT-Zimbabwe during the 2011/2012 season under irrigated and non-irrigated environments. Although grain-filling rate and effective grain-filling duration were negatively correlated, several hybrids were distinctly above the trend line. The earliest-maturing hybrid took 127 d to reach physiological maturity and produced grain yields comparable to those of the medium-maturing genotypes (7 t ha-1). It had a high grain-filling rate of 2.40 g per plant d-1 (18% higher than those of the low-yielding hybrids) and a relatively longer effective grain-filling duration. Grain-filling rate and effective grain-filling duration had high coefficients of genetic determination, positive correlations with grain yield, low error terms, and low genotype × environment interactions, making them appropriate selection traits for improved grain yield. The study shows that it is possible to develop high-yielding early- to medium-maturing maize hybrids based on favorable combining ability values for grain-filling rate and duration.
    URI
    http://dx.doi.org/10.2135/cropsci2013.01.0032
    http://hdl.handle.net/10570/4580
    Collections
    • School of Agricultural Sciences (SAS) Collections

    DSpace 5.8 copyright © Makerere University 
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of Mak IRCommunities & CollectionsTitlesAuthorsBy AdvisorBy Issue DateSubjectsBy TypeThis CollectionTitlesAuthorsBy AdvisorBy Issue DateSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace 5.8 copyright © Makerere University 
    Contact Us | Send Feedback
    Theme by 
    Atmire NV