• Login
    View Item 
    •   Mak IR Home
    • College of Health Sciences (CHS)
    • School of Health Sciences (Health-Sciences)
    • School of Health Sciences (Health-Sciences) Collections
    • View Item
    •   Mak IR Home
    • College of Health Sciences (CHS)
    • School of Health Sciences (Health-Sciences)
    • School of Health Sciences (Health-Sciences) Collections
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Pharmacokinetic interactions between chloroquine, sulfadoxine and pyrimethamine and their bioequivalence in a generic fixed-dose combination in healthy volunteers in Uganda

    Thumbnail
    View/Open
    Article (186.0Kb)
    Date
    2006
    Author
    Obua, C.
    Lundblad, M.S.
    Mahindi, M.
    Gustafsson, L.L.
    Ogwal-Okeng, J.W.
    Anokbonggo, W.W.
    Hellgren, U.
    Metadata
    Show full item record
    Abstract
    Background: A pre-packaged fixed-dose formulation of chloroquine (CQ) and sulfadoxine/pyrimethamine (S/P) combination (Homapak) is widely used for the treatment of falciparum malaria in Ugandan children. It is however a product whose pharmacokinetics and interactions have not been studied. Objectives: To explore possible pharmacokinetic interactions between CQ and S/P during co-administration, and to determine their bioavailability in the locally made Homapak compared to the Good Manufacturing Practice (GMP) made formulations. Methods: Thirty-two adult healthy volunteers were randomized into four groups and given single oral doses of fixed-dose CQ+S/P combination (Homapak), or GMP formulations of S/P (Fansidar), CQ (Pharco), or their combination. Plasma samples were followed for 21 days, analysed by HPLC-UV methods, with pharmacokinetic modeling using the WinNonlin software. Results: Sulfadoxine in Homapak was more rapidly absorbed (ka = 0.55 h-1) than in Fansidar + CQ (ka = 0.27 h-1, p=0.004), but not more than S in Fansidar alone group (ka = 0.32 h-1, p=0.03). No significant differences were observed in the other pharmacokinetic parameters of S, P and CQ when given together or separately. The relative bioavailability of CQ and S in Homapak showed bioequivalence to reference formulations. Conclusions: There were no pharmacokinetic interactions between CQ, S and P when the compounds were given together, however, more investigations would be needed to explore this further. Compared with GMP made drugs, both S and CQ are bioequivalent in Homapak, the Ugandan made fixed-dose formulation. Furthermore, the absorption of S was more rapid which could be advantageous in malaria treatment.
    URI
    http://hdl.handle.net/10570/2915
    Collections
    • School of Health Sciences (Health-Sciences) Collections

    DSpace 5.8 copyright © Makerere University 
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of Mak IRCommunities & CollectionsTitlesAuthorsBy AdvisorBy Issue DateSubjectsBy TypeThis CollectionTitlesAuthorsBy AdvisorBy Issue DateSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace 5.8 copyright © Makerere University 
    Contact Us | Send Feedback
    Theme by 
    Atmire NV