• Login
    View Item 
    •   Mak IR Home
    • College of Computing and Information Sciences (CoCIS)
    • School of Computing and Informatics Technology (CIT)
    • School of Computing and Informatics Technology (CIT) Collection
    • View Item
    •   Mak IR Home
    • College of Computing and Information Sciences (CoCIS)
    • School of Computing and Informatics Technology (CIT)
    • School of Computing and Informatics Technology (CIT) Collection
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A methodology for feature selection in named entity recognition

    Thumbnail
    View/Open
    Conference Paperand Workshop Reports (355.5Kb)
    Date
    2007
    Author
    Kitoogo, Fredrick Edward
    Baryamureeba, Venansius
    Metadata
    Show full item record
    Abstract
    In this paper a methodology for feature selection in named entity recognition is proposed. Unlike traditional named entity recognition approaches which mainly consider accuracy improvement as the sole objective, the innovation here is manifested in the use of a multiobjective genetic algorithm which is employed for feature selection basing on various aspects including error rate reduction and time taken for evaluation, and also demonstrating the use of Pareto optimization. The proposed method is evaluated in the context of named entity recognition, using three different data sets and a K-nearest Neighbour machine learning algorithm. Comprehensive experiments demonstrate the feasibility of the methodology.
    URI
    http://hdl.handle.net/10570/702
    Collections
    • School of Computing and Informatics Technology (CIT) Collection

    DSpace 5.8 copyright © Makerere University 
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of Mak IRCommunities & CollectionsTitlesAuthorsBy AdvisorBy Issue DateSubjectsBy TypeThis CollectionTitlesAuthorsBy AdvisorBy Issue DateSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace 5.8 copyright © Makerere University 
    Contact Us | Send Feedback
    Theme by 
    Atmire NV