• Login
    View Item 
    •   Mak IR Home
    • College of Computing and Information Sciences (CoCIS)
    • School of Computing and Informatics Technology (CIT)
    • School of Computing and Informatics Technology (CIT) Collection
    • View Item
    •   Mak IR Home
    • College of Computing and Information Sciences (CoCIS)
    • School of Computing and Informatics Technology (CIT)
    • School of Computing and Informatics Technology (CIT) Collection
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Collaborative Filtering: A Comparison of Graph-Based Semi-Supervised Learning Methods and Memory-Based Methods

    Thumbnail
    View/Open
    Rasna+R.+Walia_08 (1).pdf (373.9Kb)
    Date
    2008
    Author
    Walia, Rasna R
    Metadata
    Show full item record
    Abstract
    Collaborative filtering is a method of making predictions about the interests of a user based on interest similarity to other users and consequently recommending the predicted items. There is a widespread use of collaborative filtering systems in commercial websites, such as Amazon.com, which has popularized item-based methods. There are also many music and video sites such as iLike and Everyone’s a Critic (EaC) that implement collaborative filtering systems. This trend is growing in product-based sites. This paper discusses the implementation of graph-based semisupervised learning methods and memory-based methods to the collaborative filtering scenario and compares these methods to baseline methods such as techniques based on weighted average. This work compares the predictive accuracy of these methods on the MovieLens data set. The metrics used for evaluation measure the accuracy of generated predictions based on already known, held-out ratings that constitute the test set. Preliminary results indicate that graph-based semi-supervised learning methods perform better than baseline methods. However, some of the memory-based methods outperform the graph-based semi-supervised learning methods as well as the baseline methods.
    URI
    http://hdl.handle.net/10570/1978
    Collections
    • School of Computing and Informatics Technology (CIT) Collection

    DSpace 5.8 copyright © Makerere University 
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of Mak IRCommunities & CollectionsTitlesAuthorsBy AdvisorBy Issue DateSubjectsBy TypeThis CollectionTitlesAuthorsBy AdvisorBy Issue DateSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace 5.8 copyright © Makerere University 
    Contact Us | Send Feedback
    Theme by 
    Atmire NV