Show simple item record

dc.contributor.authorBaryamureeba, V
dc.contributor.authorSteihaug, T
dc.date.accessioned2013-07-12T08:57:44Z
dc.date.available2013-07-12T08:57:44Z
dc.date.issued2007
dc.identifier.isbn978-9970-02-730-9
dc.identifier.urihttp://hdl.handle.net/10570/1903
dc.description.abstractIn this paper, we consider solving the robust linear regression problem y = Ax + ∈ by an inexact Newton method and an iteratively reweighted least squares method. We show that each of these methods can be combined with the preconditioned conjugate gradient least square algorithm to solve large, sparse systems of linear equation efficiently. We consider the constant preconditioner AT A and preconditioners based on low-rank updates and downdates of existing matrix factorizations. Numerical results are given to demonstrate the effectiveness of these preconditionersen_US
dc.language.isoenen_US
dc.publisherFountain Publishers Kampalaen_US
dc.subjectRobust alternativesen_US
dc.subjectLinear regression problemen_US
dc.subjectNumerical resultsen_US
dc.subjectNewton methoden_US
dc.subjectMathematical programmingen_US
dc.titleProperties of preconditioners for robust linear regressionen_US
dc.typeBook chapteren_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record