• Login
    View Item 
    •   Mak IR Home
    • College of Computing and Information Sciences (CoCIS)
    • Academic submissions (CoCIS)
    • View Item
    •   Mak IR Home
    • College of Computing and Information Sciences (CoCIS)
    • Academic submissions (CoCIS)
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Hybridizing machine learning and static malware detection using the PE header

    Thumbnail
    View/Open
    Masters science in Computer Science thesis (1.079Mb)
    Date
    2021-11-23
    Author
    Kipsang, Jacob
    Metadata
    Show full item record
    Abstract
    Cyber crime cases currently involve demanding payment after infecting a victimized organization’s computers with ransomware or impairing operations through a distributed denial-of-service attack which significantly impacts the confidentiality, integrity and availability of data. Recent researchers show that hybridizing techniques can detect malware or benign effectively. Our research provides an experimental study on hybridizing machine learning and signature-based techniques to detect malware based on the PE header information. The dataset was sliced randomly into training 80% and testing 20% sets. The classifiers we used were Random Forest, Gradient Boosting and Ada boost to train and test the dataset. We evaluated our models using the evaluation metrics. Results showed overall achieved accuracy is high for the cleaned dataset ranging from 99.70% to 99.77%, for the uncleaned dataset range from 93.83% to 96.83%. The VirusTotal file report API had a high Average detection rate for unclean datasets ranging from 0.00% to 12.57% and a low average detection rate of 0.00% on a cleaned dataset. Random Forest emerged as the best classifier for both cleaned and uncleaned datasets with an average detection rate for static analysis of 0.00%.
    URI
    http://hdl.handle.net/10570/10125
    Collections
    • Academic submissions (CoCIS)

    DSpace 5.8 copyright © Makerere University 
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of Mak IRCommunities & CollectionsTitlesAuthorsBy AdvisorBy Issue DateSubjectsBy TypeThis CollectionTitlesAuthorsBy AdvisorBy Issue DateSubjectsBy Type

    My Account

    LoginRegister

    Statistics

    Most Popular ItemsStatistics by CountryMost Popular Authors

    DSpace 5.8 copyright © Makerere University 
    Contact Us | Send Feedback
    Theme by 
    Atmire NV