School of Physical Sciences (Phys-Sciences) Collections
Permanent URI for this collection
Browse
Browsing School of Physical Sciences (Phys-Sciences) Collections by Author "Bachmann, Robert Thomas"
Results Per Page
Sort Options
-
ItemImproved gasification of rice husks for optimized biochar production in a top lit updraft gasifier(Scientific Research Publishing, 2014) Nsamba, Hussein Kisiki ; Hale, Sarah E. ; Cornelissen, Gerard ; Bachmann, Robert ThomasBiochar is a solid material obtained from the carbonization of biomass. If properly produced, it is useful for soil application to enrich plant values. Rice husk (RH) waste, an abundant agricultural by-product, was gasified in a top-lit updraft Belonio rice husk gasifier with a biochar yield of 29.0% ± 1.9%. The equivalence ratio (ER) for optimum biochar production was identified and its effect on biochar properties such as pH, volatile matter (VM), fixed carbon (FC) and ash content (AC), electricity consumption, biochar yield, specific gasification rate (SGR) as well as reactor temperature investigated and statistically analyzed. As ER increased from 0.292 ± 0.005 to 0.442 ± 0.016, the SGR decreased from 85.4 ± 4.5 kg/(m2hr) to 51.6 ± 2.4 kg/(m2hr) whereas reactor temperature increased linearly with ER. The original VM content of RH was found to be 76.1% ± 1.2% and decreased with increasing ER from 14.1% ± 0.2% to 10.6% ± 0.3%. The original FC and AC of 5.49% ± 0.22% and 9.10% ± 1.23% increased with ER from 50.5% ± 0.7% to 51.3% ± 0.4% and 33.7% ± 0.4% to 36.7% ± 0.1% respectively. The biochar pH at low, medium and high ER was 9.36 ± 0.11, 9.64 ± 0.03 and 9.42 ± 0.01, respectively. Results revealed a significant change in biochar yield and proximate values as ER changes from low to high.
-
ItemSustainable technologies for small-scale biochar production—a review(Scientific Research Publishing Inc., 2015) Nsamba, Hussein Kisiki ; Hale, Sarah E. ; Cornelissen, Gerard ; Bachmann, Robert ThomasCharcoal has found enormous application in both agriculture (AKA biochar) and other sectors. Despite its potential benefits, small scale technologies relevant for its production remain a challenge. Technologies striking a balance between user friendliness, energy efficiency, ease of adaptation and limited emissions could easily be integrated into the local community for the sustainable production of biochar answering both technical and socio-economic aspects. These technologies can be customized to recover the produced heat alongside biochar and the producer gas. The purpose of this work is to review the state of the art in small scale technologies, their associated risks and challenges as well as research gaps for future work. Factors affecting biochar production have been discussed and temperature is known to heavily influence the biomass to biochar conversion process. Based on the reviewed work, there is a need to develop and promote sustainable and efficient technologies that can be integrated into biochar production systems. There is also further need to develop portable, economically viable technologies that could be integrated into the biochar production process without compromising the quality of produced biochar. Such technologies at midscale level can be channeled into conventional small scale farmer use in order that the farmers can process their own biochar.