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This study assessed the amount of carbon stored and the economic viability of the small-scale Clean Development 
Mechanism (CDM) carbon offsets in Pinus caribaea and Eucalyptus grandis plantations under varying rotations. 
Volume equations were used to estimate carbon stocks and merchantable wood volume in the plantations, while 
net present value (NPV) and annual equivalent value (AEV) were used as measures of profitability at the optimum 
economic rotation age as well as at the CDM-defined crediting period of 20 years. The findings show that over a 
20-year rotation, E. grandis and P. caribaea plantations sequestered 638 and 418 t CO2-e ha−1, respectively. The 
NPVs of E. grandis and P. caribaea with carbon credits over the CDM carbon-crediting period of 20 years were 
US$2 540 ha−1 and US$1 814 ha−1, respectively. This is higher than the NPVs without carbon credits of US$1 543 ha−1 
and US$1 390 ha−1 for E. grandis and P. caribaea, respectively. The AEV of E. grandis harvested at its optimal 
economic rotation of 10 years was US$316 ha−1. This is slightly higher than the AEV of US$298 ha−1, utilising 
the CDM carbon-crediting period of 20 years. In contrast, the AEV of P. caribaea under the 20-year CDM carbon-
crediting period was higher than harvesting at the optimal economic rotation of 16 years without carbon credits. 
When the average CDM contract establishment costs exceed US$500 ha−1 and US$1 000 ha−1 for P. caribaea and 
E.  grandis woodlots, respectively, it is not economically viable for one to participate in the CDM forest carbon 
offsets programme. In conclusion, the study results indicate that whereas E. grandis has a higher biological 
potential to sequester carbon than P. caribaea, it is currently not economically viable for participation in the CDM 
forest carbon offset scheme. In contrast, it is economically viable for P. caribaea plantations to participate in the 
CDM, if the CDM contract establishment costs are low. 

Keywords: carbon offsets, Clean Development Mechanism, Eucalyptus grandis, Pinus caribaea

Introduction

Southern Forests is co-published by NISC (Pty) Ltd and Taylor & Francis

In response to concerns over the impact of climate change, 
the Kyoto Protocol set binding emission targets for Annex I 
countries for a number of potent greenhouse gases (IPCC 
2003). Under the Kyoto Protocol, Annex I countries were 
allowed to meet emissions reductions targets during the 
first commitment period using flexible mechanisms such 
as the Clean Development Mechanism (CDM; UNFCCC 
1997; Wise and Cacho 2005; BioCarbon Fund 2011). 
The CDM allows for the purchase of Certified Emission 
Reductions (CERs) by Annex I countries from non-Annex 
I countries as a means of complying with binding emission 
reduction targets (Pagiola and Platais 2007). The projects 
generating the carbon credits can be carried out in a 
number of technology sectors, including the land use, 
land-use change and forestry sector (LULUCF). Under the 
LULUCF sector, the scope of activities eligible for the CDM 
in the first commitment period of the Kyoto Protocol were 
limited to afforestation and reforestation (AR) projects. The 
CDM makes it possible for AR project owners in developing 
countries to receive payments for certified emission 

reductions (CERs) (Chomitz et al. 1999; Asquith et al. 2002; 
Nelson and de Jong 2003; Nabuurs et al. 2003). 

The small-scale AR-CDM category offers a better 
opportunity for small-scale tree farmers to participate in the 
CDM carbon market (BioCarbon Fund 2011). The aim of 
the small-scale AR category is to reduce transaction costs 
per unit in order to promote small-scale projects (UNFCCC 
2007). There are two eligibility requirements AR projects 
have to fulfill to be considered small scale: (1) they must 
be developed or implemented by low-income communities 
and individuals; and (2) they must result in greenhouse gas 
removals of less than 16 000 t CO2-e y−1 (UNFCCC 2008). 
In addition, the United Nations Framework Convention 
on Climate Change (UNFCCC) allows project developers 
to bundle small-scale projects as a way to further reduce 
transaction costs. The tree farmers are paid for CERs over 
a 20-year contract period (UNFCCC 2007).

The Uganda Nile Basin Reforestation Project developed 
by the National Forest Authority is the first AR-CDM 
project in Africa that was successfully validated against 
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the UNFCCC standard. The project applied the small-scale 
AR-CDM methodology and a portfolio of five projects has 
been established. The potential of forest carbon trade in 
Uganda is largely a consequence of the excellent conditions 
for tree growth (Kaboggoza 2011). Substantial land areas 
could be used for carbon sequestration through plantation 
forestry (MWLE 2002). 

Several studies have demonstrated the substantial 
amount of carbon that can be stored by plantation forestry 
projects (Aune et al. 2004; de Jong et al. 2005; Wong et 
al. 2005; Shuifa et al. 2010; Glomsrød et al. 2011; Vonada 
et al. 2011). Other studies have also investigated the 
economic viability of including payments for carbon offsets 
(Palmer and Silber 2009; Soto-Pinto et al. 2009; Schmitt-
Harsh et al. 2012). However, most profitability studies 
assume equal rotation for plantations with and without 
carbon credits (Wise and Cacho 2005; Olschewski and 
Benitez 2005; Palmer and Silber 2009), yet in reality planta-
tions without carbon credits may be harvested before the 
crediting period of 20 years under CDM. Few studies have 
compared the profitability of forest carbon payments under 
alternative rotation length (Köthke and Dieter 2010). In 
addition, previous studies have provided mixed results, thus 
perpetuating the ambivalence about the economic viability 
of forest carbon offsets (Perez et al. 2007; Pfaff et al. 2007). 
In particular, there are concerns about the possible effect 
of high transaction costs of small-scale AR-CDM projects, 
increasing timber prices and low carbon prices on the profit-
ability of forest carbon trade (Montagnini and Nair 2004; de 
Jong et al. 2000). 

Following the expiry of the Kyoto Protocol in 2012, the 
international community adopted the COP21 agreement 
in December 2015. The COP21 agreement established 
a new mechanism, which will succeed the CDM in 2020. 
However, the rules for the new mechanism have not yet 
been adopted. Therefore, it is important that the economic 
viability of forest carbon offsets is assessed in order to 
inform the design of future carbon projects. 

Therefore, this study assessed the effect of including 
carbon offsets on the profitability of two common plantation 
forestry species. The study assessed the economic viability 
of carbon offsets in Pinus caribaea and Eucalyptus grandis 
plantations under CDM. The study also tests the effect of 
variations in transaction costs, timber prices and rotation 
length on relative profitability of the carbon offsets. Pinus 
caribaea and E. grandis are two of the most widely planted 
exotic plantation species in south-western Uganda. Both 
have been widely adopted by tree farmers because they are 
silviculturally robust and adaptable within a range of sites. 

Materials and methods

Data collection
Tree inventory data were collected from tree farmers in 
Rubirizi and Mitooma districts in south-western Uganda. 
Inventory data included tree height (metres), diameter at 
breast height (dbh; centimetres), plantation area (hectares), 
species and age of trees. The data was collected from 
94 and 106 plots of P. caribaea and E. grandis, respec-
tively. Plot size was 20 m × 20 m. The number of plots 
established on each farm depended on the farm size. 
The data were collected from plantations of 5, 10, 15 and 
20 years of age. District forest department staff, NGO staff 
and farmers in the study area provided information about 
the location of plantations.

 Focus group discussions were conducted with tree 
farmers to collect data on the quantity, price and flow 
of plantation forest products such as timber, thinnings 
and firewood. The focus group discussions also provided 
information about the transaction costs associated with 
on-farm plantation forestry and the typical management 
regimes. Key informant interviews provided information 
about technical specifications for small-scale AR-CDM, 
carbon prices and carbon transaction costs. 

Estimation of carbon stocks in woodlots
In order to estimate the temporal sequence of benefits 
received by farmers from the sale of carbon credits, we 
estimated carbon accumulation over the 20-year crediting 
period. The carbon stocks in P. caribaea and E. grandis 
plantations at 5, 10, 15 and 20 years were estimated using 
Ugandan and species-specific volume equations (Alder et 
al. 2003). The volume equations (Table 1) predict overbark 
volumes to 5 cm top diameter and underbark volumes up 
to 10 cm top diameter. Overback volume to a 5 cm top 
diameter normally approximates stem volume (Alders et 
al. 2003), whereas underbark volumes up to 10 cm top 
diameter approximate merchantable volume. The stem 
volume is converted to above-ground tree biomass using 
the respective basic wood density and biomass expansion 
factor, represented as:

		  Buh.t = Vh,t × D × BEF		  (1)

The above-ground biomass was converted to total tree 
biomass using the root:shoot ratio:

	        Bh,t = Vh,t × D × BEF × (1 + R)		  (2)

Species Volume equationa n R 2 References
Pinus caribaea V = (0.5046 ln(√[10 000/N])·exp[−7.2328 + 2.1619ln(Hd) + ln(N)] 867 90.9 Alders et al. (2003)
Pinus caribaea V10ub = 0.23232Dg

0.30142·V 1.02238 867 99.8 Alders et al. (2003)
Eucalyptus grandis V = 0.008429(Hd – 2.5)2.148·N 0.4933 346 95.9 Alders et al. (2003)
Eucalyptus grandis V10ub/V = 1 − exp(−0.4327(Dg1 − 9.5)0.762) 346 99.5 Alders et al. (2003), 

Shiver and Brister (1992)
a Hd is dominant height (in m), N is stocking (in trees ha−1), V is total stem volume (overbark to 5 cm top, in m3 ha−1), V10ub is volume 
underbark to a 10 cm top diameter (merchantable volume; in m3 ha−1), Dg is the stand mean basal area diameter (in cm) (P. caribaea), and 
Dg1 is the stand mean diameter (E. grandis)

Table 1: Regression equations used to estimate stem volume and biomass for Pinus caribaea and Eucalyptus grandis
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where Bh,t is the total tree biomass per hectare in year  t 
(tonnes of dry matter per hectare; t dm ha−1); Buh,t is the 
above-ground tree biomass per hectare in year t (t dm ha−1); 
Vh,t represents stem volume per hectare (overbark to 5 cm 
top) in year t (m3 ha−1); D is the basic wood density of the 
species (tonnes of dry matter per m3; t dm m−3); BEF is the 
biomass expansion factor for conversion of stem biomass to 
above-ground tree biomass; and R is the root:shoot ratio for 
the species.

Carbon stock (CO2 equivalent; CO2-e) in tree biomass per 
hectare in year t is estimated as:
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where Ch,t represents carbon stock in tree biomass per 
hectare in year t (t CO2-e), Bh,t is the total tree biomass per 
hectare in year t (t dm ha−1) and CF is the carbon fraction of 
tree biomass, a default value of 0.5 is used (Brown 1997; 
IPCC 2003; McGroddy et al. 2004).

The economic model
In the base-case model, the net benefits of the woodlots 
with and without carbon credits over the crediting period 
of 20 years were estimated using the net present value 
(NPV). To make the alternatives comparable over time, the 
costs and benefits were discounted into a present value 
using a real discount rate of 10% and 2015 constant prices 
(Gittinger 1982; Graves 2007).

This study adopted the ‘ideal’ carbon payment method 
proposed by Cacho and Wise (2005), for evaluating certified 
emission reductions (CERs) under CDM. Under this 
method, payments for the amount of carbon sequestered 
are made at the end of the year (Cacho et al. 2003a). The 
profit function faced by the tree farmer over the project 
period of T years is:
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where NPV is the net present value of the stream of net 
revenues (US$ ha−1) obtained from merchantable volume/
stumpage volume (Ht), firewood (At) and carbon payments 
(CERt) sales from the woodlot, using the discount factor 
δ for the discount rate r. S represents the particular 
species and T is time. In this study, wood harvested 
included stumpage volume at the end of the rotation and 
firewood (from thinnings and tree tops after harvesting). 
Ph is the stumpage, Pa is price of firewood harvested 
and 
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 represents the variable costs over the rotation. 
CE represents the establishment costs per hectare (land 
preparation, planting and establishing carbon contract). The 
last term in Equation (4) is the present value of the stream 
of net revenues obtained from the sale of carbon payments 
(CERs) for CDM. It is defined as:
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where ∆Ct represents annual changes in carbon stock in 
tree biomass per hectare in year t (t CO2-e); Pc is the price 
of carbon and Cm is the annual cost of measuring carbon.

The annual change in carbon stock in tree biomass was 
calculated by dividing carbon stock accumulated in any 
five-year interval (5, 10, 15 and 20 years) by 5:

		   ∆Ct = (Ct + 1 − Ct)/5	 (6)

Similarly, the annual change in merchantable wood volume 
was assumed to be uniform in any five-year interval. The 
value of the merchantable wood volume was estimated 
from underbark volumes up to 10 cm top diameter, using 
the stumpage value approach. The volume of tree tops 
after final harvest was estimated as the difference between 
volume overbark up to 5 cm top diameter (total tree 
volume) and underbark volumes up to 10 cm top diameter 
(merchantable volume). 

Costs
Carbon transaction costs under the small-scale AR-CDM 
include contract establishment costs and carbon 
monitoring costs. The CDM contract establishment is a 
fixed cost. This implies that the CDM contract establish-
ment cost per hectare will reduce with increasing 
acreage due to economies of scale. Due to absence 
of reliable data on transaction costs, estimates from 
similar carbon projects were used. In this study, CDM 
contract establishment cost for 100 ha of plantation forest 
of US$100 ha−1 was adopted in the base-case model 
(Cacho et al. 2003a). The annual carbon monitoring 
cost adopted for this study was US$5  ha−1 y−1 (Cacho 
et al. 2004; BioCarbon Fund 2011). Other costs are 
outlined in Table 2. 

Varying rotation approach 
In the second approach, we assessed the profitability of 
plantations with and without carbon offsets under varying 
rotations. Whereas the base-case model assumed equal 
rotation for plantations with and without carbon credits, in 
reality plantations without carbon credits may be harvested 
before the crediting period of 20 years under CDM. This 
implies that the non-carbon farmers do not need to wait 
for the crediting period because they are not under any 
contract. Instead they can harvest at the optimal economic 
rotation, which may be different from the crediting period 
for CDM. Therefore, the economic profitability of planta-
tions without carbon credits at shorter rotations, including 
the economically optimal rotation of each species, was 
estimated and compared with carbon offsets. Apart from 
varying the rotations, the other base-case assumptions 
remained the same. 

The optimal economic rotation age of the forest stand is 
reached when the land expectation value (LEV) reaches 
its maximum (Köthke and Dieter 2010). The maximum 
value of LEV for a sequence of rotations is defined by the 
Faustmann formula as:
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where LEV is the land expectation value (US$ ha−1), T is 
the rotation age (years), a is the year of revenue or cost 
(years), Rh is the stumpage value (US$ ha−1), Rs is the net 
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revenue from thinning (US$ ha−1), K is the replanting cost 
(US$ ha−1), and i is the interest rate. 

Given the difference in the rotations, the annual equivalent 
value (AEV) was derived from the NPV and used to 
compare profitability. It was adopted because NPV is not 
appropriate for comparisons of economic feasibility of 
projects with different lifetimes (Gittinger 1982; Hseu and 
Buongiorno 1997; Gutiérrez et al. 2006). The AEV approach 
calculates the constant annual cash flow generated by an 
investment over its lifespan as an annuity. The present value 
of the constant annual cash flows is exactly equal to the 
project’s NPV. The AEV is defined as:
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where n is the lifetime of the project and i is the discount 
rate.

Sensitivity analysis
The base-case results are affected by stumpage price, 
discount rate, carbon price and carbon transaction costs. 
Therefore, these variables were subjected to sensitivity 
analysis. Sensitivity analysis was conducted by changing 
the variable of interest while keeping all other variables at 
their base-case values. The base-case assumed a carbon 
price of US$4.15 t−1 CO2-e under CDM, which was reported 
in the Uganda Nile Basin Reforestation Project. Other 
studies have reported the carbon price to range between 
US$5 to US$25 t−1 CO2-e (Cacho et al. 2005). Therefore, 
we tested this range within the sensitivity analysis. 

The base-case stumpage price was US$50 m−3 for 
P.  caribaea and US$30 m−3 for E. grandis. However, 
stumpage prices have been steadily rising throughout the 
last decade due to the increased demand for timber and 
they are expected to continue rising (Kaboggoza 2011). 
Annual price increments of up to 20% have been reported in 
Uganda. Stumpage prices ranging from US$50 to US$70 m−3 
were evaluated for P. caribaea and US$30 to US$50 m−3 for 
E. grandis. Carbon contract establishment costs ranging from 

US$100 to US$2 000 ha−1 were included in the sensitivity 
analysis. Comparable studies showed a wide range of 
discount rates, ranging from 5% to 25% (de Jong et al. 2000; 
Tomich et al. 2002; Aune et al. 2004; Cacho et al. 2003b). 
Therefore, we tested this range within the sensitivity analysis. 

Results

The results indicated that P. caribaea and E. grandis planta-
tions sequestered 418 and 638 t CO2-e ha−1, respectively, 
over a 20-year rotation (Figure 1). The average merchant-
able wood volume accumulated in P. caribaea and 
E. grandis plantations over the same period was 279 and 
448 m3 ha−1, respectively. In this study, the merchantable 
wood volume refers to tree volume underbark up to 10 cm 
top diameter (in m3 ha−1) (Alders et al. 2003).

Base-case results under equal rotation assumption
The results indicated that the NPV of E. grandis woodlots 
with CDM carbon credits of US$2 540 ha−1 was positive 
and higher than without carbon credits of US$1 543 ha−1, 
assuming an equal rotation of 20 years. Similarly, the NPV 
for P. caribaea with carbon credits of US$1 814 ha−1 was 
higher than without carbon credits of US$1 390 ha−1. This 
implies that it is worth investing in carbon forestry under 
CDM assuming that woodlots with and without carbon 
credits have equal rotations of 20 years and given the other 
base-case assumptions. Under these assumptions, carbon 
payments under CDM increased NPV of E. grandis and 
P. caribaea by 65% and 31%, respectively. 

Sensitivity analysis
The results of the sensitivity analysis indicated that the 
NPVs of plantations with carbon credits increased with 
the price of carbon and stumpage (Figure 2b and d). 
However, E. grandis was more sensitive to change in 
carbon and stumpage price than P. caribea, as shown by 
the higher rate of NPV increment. This can be attributed 
to the higher stocks of merchantable wood (m3 ha−1) and 
carbon (t CO2-e ha−1) (Figure 1). As expected, the NPVs 

Table 2: Base-case assumptions and parameter values for Pinus caribaea and Eucalyptus grandis. CDM = Clean Development Mechanism

Parameter
Eucalyptus grandis Pinus caribaea

Source
Value Unit Value Unit

CDM carbon price 4.15 US$ t−1 CO2-e 4.15 US$ t−1 CO2-e Tennigkeit and Windhorst (2007)
Stumpage price 30 US$ m−3 50 US$ m−3 Field data collection (this study)
Price of firewood 5 US$ m−3 5 US$ m−3 Field data collection (this study)
Discount rate 10 % 10 % Gittinger (1982), Wise and Cacho (2005)
Baseline carbon 9 t CO2-e 9 t CO2-e Rainfall Alliance (2009)
Establishment costs 356 US$ ha−1 467 US$ ha−1 Field data collection (this study)
Maintenance costs
Slashing cost 40 US$ ha−1 40 US$ ha−1 Field data collection (this study)
First thinning cost 33 US$ ha−1 33 US$ ha−1 Field data collection (this study)
Second thinning cost 40 US$ ha−1 40 US$ ha−1 Field data collection (this study)
CDM annual monitoring costs 5 US$ ha−1 5 US$ ha−1 Cacho et al. (2004), BioCarbon Fund (2011)
CDM contract establishment cost 100 US$ 100 US$ BioCarbon Fund (2011)
Wood density 0.52 t dm m−3 0.48 t dm m−3 IPCC (2003); Orwa et al. (2009)
Wood carbon content  0.5 – 0.5 – IPCC (2003)
Root:shoot ratio 0.45–0.2 – 0.46–0.23 – IPCC (2003)
Biomass expansion factor 1.39 – 1.3 – IPCC (2003), Rawat et al. (2015)
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of plantations decreased with increasing discount rates. 
Similarly, the NPVs of plantations with carbon credits 
decreased with increasing CDM contract establishment 
costs (Figure 2a and c). As the carbon contract establish-
ment costs increased, the NPV of woodlots with carbon 
credits fell below that without carbon credits at US$500 ha−1 

and US$1 000 ha−1 for P. caribaea and E. grandis, respec-
tively. This suggests that if the average contract establish-
ment costs exceed US$500 ha−1 and US$1 000 ha−1 for 
P. caribaea and E. grandis plantations, respectively, then 
it is not economically viable for one to participate in CDM 
forest carbon offsets. 

Varying rotation approach
The land expectation values (Figure 3) for P. caribaea  and 
E. grandis  were maximised at 16 and 10 years, respec-
tively. These are the optimal economic rotations for the two 
types of plantations.

The results indicated that the AEV of E. grandis when 
harvested at its optimal economic rotation of 10 years, 
without carbon credits, is US$316 ha−1. This is slightly 
higher than the AEV of E. grandis with carbon credits under 
base-case assumptions of US$298 ha−1. This implies that 
an E. grandis stand harvested at 10-years rotation without 
carbon credits is more profitable than one that receives 
payments for carbon credits under CDM but has to observe 
the 20-year credit period. In contrast, the AEV of P. caribaea 
with carbon credits under CDM was US$213 ha−1 and higher 
than US$169 ha−1 for P. caribaea harvested at its optimal 
economic rotation of 16 years without carbon credits. 

Sensitivity analysis using equivalent annual annuity 
approach
In general, the AEVs of the plantations increased with 
stumpage price (Figure 4b). However, the AEVs of the 

Figure 1: Time trajectory of merchantable wood volume (m3 ha−1) 
and carbon stocks in standing tree biomass (t CO2-e ha−1) for 
thinned Pinus caribaea and Eucalyptus grandis plantations
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shorter-rotation plantations increased at a faster rate than 
the longer rotations. This implies that at a high stumpage 
price for E. grandis, it would pay to adopt shorter rotations 
without carbon credits rather than wait for the 20-year 
crediting period under CDM. In contrast, the faster increase 
of AEVs in the shorter-rotation pine woodlots was not 
sufficient to exceed the AEV of woodlots with carbon credits 
in the range tested. Therefore, carbon offsets in P. caribaea 
woodlots are more robust to increase in stumpage price.

As expected, carbon offsets were more profitable with 
increasing carbon prices (Figure 4c). 

Discussion

The findings show that E. grandis and P. caribaea planta-
tions accumulated substantial amounts of carbon over a 
20-year rotation. This suggests that the plantation forestry 
sector has the potential to significantly contribute to carbon 
sequestration and climate-change mitigation. The potential 
of carbon trade in Uganda’s plantation forests has been 
attributed to the relatively fast tree growth. The results also 
indicated that it is worth investing in carbon forestry under 
CDM in the equal rotation scenario. However, this changes 
under the varying rotation approach. The results showed 
that whereas E. grandis has a higher biological potential 
to sequester carbon than P. caribaea, it is not economi-
cally viable for participation in the CDM forest carbon offset 
scheme under the base-case assumptions. The results 
indicated that at a high stumpage price for E. grandis, it 
would pay to adopt shorter rotations without carbon credits 
rather than wait for the 20-year crediting period under CDM. 
This is in agreement with microeconomic theory, which 
indicates that a rise in timber prices shortens the optimal 
rotation period (Nicholson and Snyder 2008). This suggests 
that participation in forest carbon offsets will become 
even less economically viable as the stumpage price of 
E. grandis increases. In Uganda, stumpage prices have 
been steadily rising over time and they are expected to 
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Figure 3: Time trajectory of the land expectation value for Pinus 
caribaea and Eucalyptus grandis
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continue rising (Kaboggoza 2011). Therefore, this requires 
the price of forest carbon credits to match the increase in 
the eucalypt stumpage price if forest carbon offsets are to 
become viable for E. grandis plantations. 

The results indicated that inclusion of carbon offsets in 
eucalypt plantations can become viable if the carbon price 
is raised from the current US$4.15 t−1 CO2-e. Therefore, 
the price of forest carbon should be increased beyond 
US$4.15 t−1 CO2-e in order to make carbon offsets under 
CDM economically attractive to eucalypt tree farmers. This 
is justified by the higher potential of eucalypts to sequester 
carbon, thus contributing to mitigation of global warming. 

In contrast, it is economically viable to include P. caribaea 
plantations in CDM, even at the current carbon prices. 
Given its slower growth rate, the optimal economic rotation 
of 16 years is close to the 20-year crediting period under 
CDM. Therefore, sale of carbon credits may be considered 
an additional benefit to P. caribaea plantation owners. 

The results showed that when the average CDM 
contract establishment costs exceed US$500 ha−1 and 
US$1  000  ha−1 for P. caribaea and E. grandis woodlots, 
respectively, it is not economically viable for one to parti-
cipate in the CDM forest carbon offsets programme. 
However, such costs are still unaffordable to the average 
small-scale forest plantation owners and may continue to 
be a major hindrance to small-holder farmer participation in 
CDM under LULUCF. Therefore, modalities for the small-
scale AR category need to be simplified further, in order to 
reduce the transaction costs and promote the participation 
of small-scale projects in CDM under LULUCF. Given that 
carbon contract establishment costs are fixed, participa-
tion in CDM under LULUCF can be made profitable either 
by having a large acreage, such that the average cost per 
hectare is lowered, or by bundling many farmers together 
to share the costs (BioCarbon Fund 2011). At the national 
level, government and NGOs should facilitate the process 
of bundling tree farmers together in sizable groups in order 
to reduce costs per project. 

The soil carbon stock was not accounted for under the 
assumptions of this paper because the net change in soil 
carbon is expected to be positive but small. The consensus 
is that soil carbon should be measured under LULUCF if 
a decrease is expected or if the financial benefit exceeds 
the cost of measuring and certifying the soil carbon (Brown 
2001; Cacho et al. 2003a). 

Conclusion

In conclusion, the carbon price under CDM should be 
increased in order to make it economically viable for 
participation of fast-growing species such as E. grandis. 
Similarly, it is economically viable for P. caribaea planta-
tions to participate in the CDM, as long as the CDM contract 
establishment costs are low. Therefore, modalities for 
the small-scale AR category need to be simplified further, 
in order to reduce the transaction costs and promote the 
participation of small-scale projects in CDM under LULUCF. 
Secondly, government and NGOs should facilitate the 
process of bundling tree farmers together in sizable groups 
in order to reduce costs per project. Currently, it is difficult 
to obtain adequate primary data on CDM carbon contract 

establishment costs and carbon monitoring costs. Future 
studies should focus on this aspect of carbon forestry in 
African countries.
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